GENERAL SPECIFICATIONS AND CHARACTERISTICS

INPUT
- **Input Voltage CM RMS Max:** 175 V
- **Input Voltage CM Peak Max:** 155 V
- **Input Voltage CM RMS Max:** 1.2 kV
- **Input Voltage CM Peak:** 1.0 kV
- **Input Voltage DM Peak:** 4.0 kV
- **Input Voltage DM RMS:** 2.0 kV
- **Input Voltage CM Peak:** 6.3 kV
- **Input Voltage DM Peak:** 6.3 kV

OUTPUT
- **Output Voltage Peak:** ±1.75 kV
- **Output Voltage DC RMS:** 1.75 kV
- **Output Voltage RMS:** 1.5 kV
- **Output Voltage Peak:** 3.5 kV
- **Output Voltage RMS:** 3.15 kV
- **Output Voltage Peak:** 4.0 kV
- **Output Voltage RMS:** 3.5 kV
- **Output Voltage Peak:** 4.0 kV
- **Output Voltage RMS:** 4.0 kV
- **Output Voltage Peak:** 6.0 kV
- **Output Voltage RMS:** 6.0 kV

ACCURACY
- **Accuracy:** ±5.20 V ±5.20 V @ 100 mA
- **Accuracy:** ±2.00 V ±2.00 V @ 100 mA
- **Accuracy:** ±1.75 V ±1.75 V @ 100 mA
- **Accuracy:** ±1.00 V ±1.00 V @ 100 mA
- **Accuracy:** ±0.15 V ±0.15 V @ 100 mA
- **Accuracy:** ±0.10 V ±0.10 V @ 100 mA
- **Accuracy:** ±0.05V ±0.05V @ 100 mA

OFFSET
- **Maximum Offset:** ±0.5 μm
- **Maximum Offset:** ±0.1 μm
- **Maximum Offset:** ±0.05 μm

NOISE
- **Noise:** ±0.5 μV
- **Noise:** ±0.1 μV
- **Noise:** ±0.05 μV

RISETIME
- **Risetime:** <2.9 ns

OUTPUT IMPEDANCE
- **Output Impedance:** 50 Ω
- **Output Impedance:** 100 Ω
- **Output Impedance:** 500 Ω

INPUT IMPEDANCE
- **Input Impedance:** 50 Ω
- **Input Impedance:** 100 Ω
- **Input Impedance:** 1000 Ω

ENVIRONMENT
- **Operating Temperature:** -40°C to +80°C
- **Storage Temperature:** -55°C to +125°C

SYSTEM MOUNTING
- **Direct Mounting**
- **Mounting Flange Type A**
- **Mounting Flange Type B**

MECHANICAL DRAWINGS

- **Direct Mounting**
- **Mounting Flange Type A**
- **Mounting Flange Type B**

HIGHLIGHTS & FEATURES

- **Low Input Capacitance**
- **120 MHz Bandwidth**
- **Up To 6 kV RMS, 12 kV Peak**
- **Four Standard and Four Precision Models with up to 0.1% DC Accuracy**
- **Unmatched Performance when Measuring High CM Slew Rate Signals**
- **Digital Offset Adjustment**
- **Low Noise**

APPLICATIONS

Our probes excel in power conversion system testing. Their low input capacitance reduces circuit loading at high frequencies. The DP04 series has a high resonant input frequency, greater than 100 MHz, making them prime candidates for applications requiring good accuracy at high frequencies. A proprietary input stage prevents undesirable HF oscillations that are often found in other probes when making extremely high slew rate measurements. DP04 probes can be used in automotive industry, especially for R&D on electrical and hybrid vehicles. Other applications include megawatt traction inverters, power supply design, power generation, UPS, electro-magnetic systems, fusion research, laser research and surge testing. The DP04 can be mounted inside systems allowing users to replace lower performance voltage measuring modules. Other possible uses are for close monitoring of in-system power switching devices for failure prevention in ultra-reliable equipment. Custom versions are available on request.

Notes
1. At 25°C ambient temperature horizontal mounting orientation.
2. All parameters are typical specified at 25°C ambient temperature unless otherwise indicated.
3. Measurement is ±50 Ω for 1:1,000, ±25 Ω for 1:2,000, ±10 Ω for 1:10,000.
4. ±10 μVrms at 120 MHz requires >100 mΩ.
5. CM stands for Common Mode and DM for Differential Mode.

GENERAL SPECIFICATIONS AND CHARACTERISTICS

FEATURES
- The DP04 series probes offer new and innovative technologies that allow a significant increase in performance over conventional HV differential probes. This and other proprietary technologies improve the performance of our probes by a factor of ten times compared to others when used with high, common mode slew rate input signals.
- These probes offer accuracy along with very low offset voltage.
- A specially designed instrumentation power supply has been used to increase the stability and minimize noise levels. The UVC models offer higher accuracy due to use of low-voltage and temperature coefficient internal components. All probes have a 50 Ω output impedance for properly driving very long length coaxial cables. This makes it ideal for off-limit test areas which are outside of the main laboratory.
- These probes offer accuracy along with very low offset voltage.
- A specially designed instrumentation power supply has been used to increase the stability and minimize noise levels. The UVC models offer higher accuracy due to use of low-voltage and temperature coefficient internal components. All probes have a 50 Ω output impedance for properly driving very long length coaxial cables. This makes it ideal for off-limit test areas which are outside of the main laboratory.